英文原著

  1. Evaluation of therapeutic PD-1 antibodies by an advanced single-molecule imaging system detecting human PD-1 microclusters. Nishi W, Wakamatsu E, Machiyama H, Matsushima R, Saito K, Yoshida Y, Nishikawa T, Takehara T, Toyota H, Furuhata M, Nishijima H, Takeuchi A, Azuma M, Suzuki M, Yokosuka T. Nat Commun. 2023 June 6, 14, 3157. doi.org/10.1038/s41467-023-38512-7
  2. PD-L2 suppresses T cell signaling via coinhibitory microcluster formation and SHP2 phosphatase recruitment. Takehara T, Wakamatsu E, Machiyama H, Nishi W, Emoto K, Azuma M, Soejima K, Fukunaga K, Yokosuka T. Commun Biol. 2021 May 14;4(1):581. doi: 10.1038/s42003-021-02111-3.
  3. Inhibition of T cell activation and function by the adaptor protein CIN85. Kong MS, Hashimoto-Tane A, Kawashima Y, Sakuma M, Yokosuka T, Kometani K, Onishi R, Carpino N, Ohara O, Kurosaki T, Phua KK, Saito T. Sci Signal. 2019 Feb 5;12(567):eaav4373. doi: 10.1126/scisignal.aav4373.
  4. Role of interleukin-25 in development of spontaneous arthritis in interleukin-1 receptor antagonist-deficient mice. Abe Y, Nambu A, Yamaguchi S, Takamori A, Suto H, Hirose S, Yokosuka T, Nakae S, Sudo K. Biochem Biophys Rep. 2017 Aug (12):62-65. doi.org/10.1016/j.bbrep.2017.08.006
  5. The use of a genetically encoded molecular crowding sensor in various biological phenomena. Machiyama H, Morikawa TJ, Okamoto K, Watanabe TM, Fujita H. Biophys Physicobiol. 2017 Aug 19;14:119-125. doi: 10.2142/biophysico.14.0_119. eCollection 2017.
  6. A novel c-Src recruitment pathway from the cytosol to focal adhesions. Machiyama H, Yamaguchi T, Watanabe TM, Fujita H. FEBS Lett. 2017 Jul;591(13):1940-1946. doi: 10.1002/1873-3468.12696.
  7. Blockage of Core Fucosylation Reduces Cell-Surface Expression of PD-1 and Promotes Anti-tumor Immune Responses of T Cells. Okada M, Chikuma S, Kondo T, Hibino S, Machiyama H, Yokosuka T, Nakano M, Yoshimura A. Cell Rep. 2017 Aug 1;20(5):1017-1028. doi: 10.1016/j.celrep.2017.07.027.
  8. Micro-adhesion rings surrounding TCR microclusters are essential for T cell activation. Hashimoto-Tane A, Sakuma M, Ike H, Yokosuka T, Kimura Y, Ohara O, Saito T. J Exp Med. 2016 Jul 25;213(8):1609-25. doi: 10.1084/jem.20151088.
  9. Differential regulation of T-cell dependent and T-cell independent antibody responses through arginine methyltransferase PRMT1 in vivo.  Hata K, Yanase N, Sudo K, Kiyonari H, Mukumoto Y, Mizuguchi J, Yokosuka T.  FEBS Lett. 2016 Apr;590(8):1200-10. doi: 10.1002/1873/3468.12161.
  10. Vaccination with OVA-bound nanoparticles encapsulating IL-7 inhibits the growth of OVA-expressing E.G7 tumor cells in vivo. Toyota H, Yanase N, Yoshimoto T, Harada M, Kato Y, Mizuguchi J. Oncol Rep. 2015 Jan;33(1):292-6. doi: 10.3892/or.2014.3603.
  11. Clustering of CARMA1 through SH3-GUK domain interactions is required for its activation of NF-κB signalling. Hara H, Yokosuka T, Hirakawa H, Ishihara C, Yasukawa S, Yamazaki M, Koseki H, Yoshida H, Saito T. Nat Commun. 2015 Jan 20;6:5555. doi: 10.1038/ncomms6555.
  12. Thy28 protects against anti-CD3-mediated thymic cell death in vivo.Toyota H, Sudo K, Kojima K, Yanase N, Nagao T, Takahashi RH, Iobe H, Kuwabara T, Kakiuchi T, Mizuguchi J. Apoptosis. 2015 Apr;20(4):444-54. doi: 10.1007/s10495-014-1082-0.
  13. OVA-bound nanoparticles induce OVA-specific IgG1, IgG2a, and IgG2b responses with low IgE synthesis. Yanase N, Toyota H, Hata K, Yagyu S, Seki T, Harada M, Kato Y, Mizuguchi J. Vaccine. 2014 Oct 14;32(45):5918-24. doi: 10.1016/j.vaccine.2014.08.059.
  14. Protein kinase C-η controls CTLA-4-mediated regulatory T cell function. Kong KF, Fu G, Zhang Y, Yokosuka T, Casas J, Canonigo-Balancio AJ, Becart S, Kim G, Yates JR 3rd, Kronenberg M, Saito T, Gascoigne NR, Altman A. Nat Immunol. 2014 May;15(5):465-72. doi: 10.1038/ni.2866.
  15. The lymphoid lineage-specific actin-uncapping protein Rltpr is essential for costimulation via CD28 and the development of regulatory T cells. Liang Y*, Cucchetti M*, Roncagalli R*, Yokosuka T*, Malzac A, Bertosio E, Imbert J, Nijman IJ, Suchanek M, Saito T, Wülfing C, Malissen B, Malissen M. (* equally contributed authors) Nat Immunol. 2013 Aug;14(8):858-66. doi: 10.1038/ni.2634.
  16. Arginine methylation regulates antibody responses through modulating cell division and isotype switching in B cells. Hata K, Mizuguchi J. Microbiol Immunol. 2013 Mar;57(3):185-92. doi: 10.1111/1348-0421.12019.
  17. PKC-δ mediates interferon-α-induced apoptosis through c-Jun NH₂-terminal kinase activation. Yanase N, Hayashida M, Kanetaka-Naka Y, Hoshika A, Mizuguchi J. BMC Cell Biol. 2012 Mar 21;13:7. doi: 10.1186/1471-2121-13-7.
  18. Programmed cell death 1 forms negative costimulatory microclusters that directly inhibit T cell receptor signaling by recruiting phosphatase SHP2. Yokosuka T, Takamatsu M, Kobayashi-Imanishi W, Hashimoto-Tane A, Azuma M, Saito T. J Exp Med. 2012 Jun 4;209(6):1201-17. doi: 10.1084/jem.20112741.
  19. A motif in the V3 domain of the kinase PKC-θ determines its localization in the immunological synapse and functions in T cells via association with CD28. Kong KF, Yokosuka T, Canonigo-Balancio AJ, Isakov N, Saito T, Altman A. Nat Immunol. 2011 Oct 2;12(11):1105-12. doi: 10.1038/ni.2120.
  20. CIN85 drives B cell responses by linking BCR signals to the canonical NF-kappaB pathway. Kometani K, Yamada T, Sasaki Y, Yokosuka T, Saito T, Rajewsky K, Ishiai M, Hikida M, Kurosaki T. J Exp Med. 2011 Jul 4;208(7):1447-57. doi: 10.1084/jem.20102665.
  21. Dynein-driven transport of T cell receptor microclusters regulates immune synapse formation and T cell activation. Hashimoto-Tane A, Yokosuka T, Sakata-Sogawa K, Sakuma M, Ishihara C, Tokunaga M, Saito T. Immunity. 2011 Jun 24;34(6):919-31. doi: 10.1016/j.immuni.2011.05.012.
  22. Spatiotemporal basis of CTLA-4 costimulatory molecule-mediated negative regulation of T cell activation. Yokosuka T, Kobayashi W, Takamatsu M, Sakata-Sogawa K, Zeng H, Hashimoto-Tane A, Yagita H, Tokunaga M, Saito T. Immunity. 2010 Sep 24;33(3):326-39. doi: 10.1016/j.immuni.2010.09.006.
  23. T-cell receptor microclusters critical for T-cell activation are formed independently of lipid raft clustering. Hashimoto-Tane A, Yokosuka T, Ishihara C, Sakuma M, Kobayashi W, Saito T. Mol Cell Biol. 2010 Jul;30(14):3421-9. doi: 10.1128/MCB.00160-10.
  24. CRTAM confers late-stage activation of CD8+ T cells to regulate retention within lymph node. Takeuchi A, Itoh Y, Takumi A, Ishihara C, Arase N, Yokosuka T, Koseki H, Yamasaki S, Takai Y, Miyoshi J, Ogasawara K, Saito T. J Immunol. 2009 Oct 1;183(7):4220-8. doi: 10.4049/jimmunol.0901248.
  25. Spatiotemporal regulation of T cell costimulation by TCR-CD28 microclusters and protein kinase C theta translocation. Yokosuka T, Kobayashi W, Sakata-Sogawa K, Takamatsu M, Hashimoto-Tane A, Dustin ML, Tokunaga M, Saito T. Immunity. 2008 Oct 17;29(4):589-601. doi: 10.1016/j.immuni.2008.08.011.
  26. LFA-1 decreases the antigen dose for T cell activation in vivo. Wang Y, Shibuya K, Yamashita Y, Shirakawa J, Shibata K, Kai H, Yokosuka T, Saito T, Honda S, Tahara-Hanaoka S, Shibuya A. Int Immunol. 2008 Sep;20(9):1119-27. doi: 10.1093/intimm/dxn070.
  27. Genetic analysis reveals an intrinsic property of the germinal center B cells to generate A:T mutations. Ouchida R, Ukai A, Mori H, Kawamura K, Dollé ME, Tagawa M, Sakamoto A, Tokuhisa T, Yokosuka T, Saito T, Yokoi M, Hanaoka F, Vijg J, Wang JY. DNA Repair (Amst). 2008 Aug 2;7(8):1392-8. doi: 10.1016/j.dnarep.2008.04.014.
  28. Cloning of B cell-specific membrane tetraspanning molecule BTS possessing B cell proliferation-inhibitory function. Suenaga T, Arase H, Yamasaki S, Kohno M, Yokosuka T, Takeuchi A, Hattori T, Saito T. Eur J Immunol. 2007 Nov;37(11):3197-207.
  29. Interferon-alpha induces transient upregulation of c-FLIP through NF-kappaB activation. Kanetaka Y, Hayashida M, Hoshika A, Yanase N, Mizuguchi J. Exp Cell Res. 2008 Jan 15;314(2):246-54.
  30. Interferon-alpha-induced apoptosis via tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-dependent and -independent manner. Yanase N, Kanetaka Y, Mizuguchi J. Oncol Rep. 2007 Oct;18(4):1031-8.
  31. Role for Btg1 and Btg2 in growth arrest of WEHI-231 cells through arginine methylation following membrane immunoglobulin engagement. Hata K, Nishijima K, Mizuguchi J. Exp Cell Res. 2007 Jul 1;313(11):2356-66.
  32. T cell receptor-proximal signals are sustained in peripheral microclusters and terminated in the central supramolecular activation cluster. Varma R, Campi G, Yokosuka T, Saito T, Dustin ML. Immunity. 2006 Jul;25(1):117-27.
  33. A critical role for the innate immune signaling molecule IRAK-4 in T cell activation. Suzuki N, Suzuki S, Millar DG, Unno M, Hara H, Calzascia T, Yamasaki S, Yokosuka T, Chen NJ, Elford AR, Suzuki J, Takeuchi A, Mirtsos C, Bouchard D, Ohashi PS, Yeh WC, Saito T. Science. 2006 Mar 31;311(5769):1927-32.
  34. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Yokosuka T, Sakata-Sogawa K, Kobayashi W, Hiroshima M, Hashimoto-Tane A, Tokunaga M, Dustin ML, Saito T. Nat Immunol. 2005 Dec;6(12):1253-62.
  35. Heterotypic interaction of CRTAM with Necl2 induces cell adhesion on activated NK cells and CD8+ T cells. Arase N, Takeuchi A, Unno M, Hirano S, Yokosuka T, Arase H, Saito T. Int Immunol. 2005 Sep;17(9):1227-37.
  36. CD25(+)CD4(+) regulatory T cells exert in vitro suppressive activity independent of CTLA-4. Kataoka H, Takahashi S, Takase K, Yamasaki S, Yokosuka T, Koike T, Saito T. Int Immunol. 2005 Apr;17(4):421-7.
  37. In vivo overexpression of CTLA-4 suppresses lymphoproliferative diseases and thymic negative selection. Takahashi S, Kataoka H, Hara S, Yokosuka T, Takase K, Yamasaki S, Kobayashi W, Saito Y, Saito T. Eur J Immunol. 2005 Feb;35(2):399-407.
  38. NFAM1, an immunoreceptor tyrosine-based activation motif-bearing molecule that regulates B cell development and signaling. Ohtsuka M, Arase H, Takeuchi A, Yamasaki S, Shiina R, Suenaga T, Sakurai D, Yokosuka T, Arase N, Iwashima M, Kitamura T, Moriya H, Saito T. Proc Natl Acad Sci U S A. 2004 May 25;101(21):8126-31.
  39. IgE-mediated activation of NK cells through Fc gamma RIII. Arase N, Arase H, Hirano S, Yokosuka T, Sakurai D, Saito T. J Immunol. 2003 Mar 15;170(6):3054-8.
  40. Predominant role of T cell receptor (TCR)-alpha chain in forming preimmune TCR repertoire revealed by clonal TCR reconstitution system. Yokosuka T, Takase K, Suzuki M, Nakagawa Y, Taki S, Takahashi H, Fujisawa T, Arase H, Saito T. J Exp Med. 2002 Apr 15;195(8):991-1001.

英文総説

  1. Molecular Imaging of PD-1 Unveils Unknown Characteristics of PD-1 Itself by Visualizing “PD-1 Microclusters”.  Wataru Nishi, Ei Wakamatsu, Hiroaki Machiyama, Ryohei Matsushima, Yosuke Yoshida, Tetsushi Nishikawa, Hiroko Toyota, Masae Furuhata, Hitoshi Nishijima, Arata Takeuchi, Makoto Suzuki.Tadashi Yokosuka. Basic Immunology and Its Clinical Application, 2024, 12 Mar., pp197-205, Springer, doi.org/10.1007/978-981-99-9781-7_13
  2. Analyzing the Dynamics of Signaling Microclusters. Hashimoto-Tane A, Yokosuka T, Saito T. The Immune Synapse. Methods Mol Biol. 2017;1584:51-64. doi: 10.1007/978-1-4939-6881-7_4.
  3. The multifaced role of PD-1 in health and disease. Badr MESG, Furuhata M, Toyoda H, Yokosuka T. Chronic inflammation 2016, 25 Oct., pp441-457, Springer 10.1007/978-4-431-56068-5_34
  4. The immunological synapse, TCR microclusters, and T cell activation. Yokosuka T, Saito T. Curr Top Microbiol Immunol. 2010;340:81-107. doi: 10.1007/978-3-642-03858-7_5.
  5. Dynamic regulation of T cell activation and co-stimulation through TCR-microclusters. Saito T, Yokosuka T, Hashimoto-Tane A. FEBS Lett. 2010 Dec 15;584(24):4865-71. doi: 10.1016/j.febslet.2010.11.036.
  6. Dynamic regulation of T-cell costimulation through TCR-CD28 microclusters. Yokosuka T, Saito T. Immunol Rev. 2009 May;229(1):27-40. doi: 10.1111/j.1600-065X.2009.00779.x.
  7. Immunological synapse and microclusters: the site for recognition and activation of T cells. Saito T, Yokosuka T. Curr Opin Immunol. 2006 Jun;18(3):305-13. Epub 2006 Apr 17.

日本語総説・著書

  1. すべてはここから始まった、CTLA-4. 横須賀忠、若松英、古畑昌枝、豊田博子、秦喜久美、矢那瀬紀子、町山裕亮 実験医学36(9):1445-1451 2018 (Total 1432-1570)
  2. T細胞活性化の時空間的制御機構. 横須賀忠、若松英、矢那瀬紀子、秦喜久美、町山裕亮 生物物理58(1):005-011
  3. 細胞膜脂質成分によるT細胞シグナルソームと活性化の制御機構. 横須賀忠、古畑昌枝、豊田博子、秦喜久美、矢那瀬紀子、町山裕亮  臨床免疫・アレルギー 67(3):321-328 2017
  4. 最先端イメージング技術によるTCRシグナル研究の進歩. 横須賀忠、古畑昌枝、豊田博子、秦喜久美、矢那瀬紀子、町山裕亮  臨床免疫・アレルギー 66(2):169-176 2016
  5. T細胞免疫シナプス研究の最新事情. 横須賀忠 臨床免疫・アレルギー 63:1893-2000 2015
  6. T細胞活性化におけるチェックポイント. 横須賀忠 炎症と免疫 23:10-20 2015
  7. T細胞におけるPD-1の生理機能と分子基盤. 横須賀忠 腫瘍内科 14:419-426 2014
  8. リンパ球特異的アクチンアンキャッピング蛋白Rltprは、補助刺激受容体CD28を介するT細胞活性化と制御性T細胞分化に必須である.横須賀忠、斉藤隆、Malissen B 新着論文レビュー 2013
  9. CTLA-4によるT細胞の制御機序.横須賀忠 臨床免疫・アレルギー 56:111-118 2011
  10. CTLA-4によるT細胞活性化の時空間的制御.横須賀忠 医学のあゆみ 237:1199-1200 2011
  11. T細胞活性化に対する補助刺激受容体CTLA-4による時空間的制御メカニズムの解明.横須賀忠、斉藤隆 新着論文レビュー 2008
  12. T細胞活性化時のTCRとシグナル伝達分子の動態.横須賀忠 臨床免疫・アレルギー 50:247-254 2008
  13. Annual Review 2008「免疫シナプスを構成するTCRマイクロクラスターとT細胞活性化機構」中外医学社 横須賀忠 2008
  14. T細胞受容体マイクロクラスター —T細胞活性化を制御するシグナルソームの発見— 横須賀忠 感染炎症免疫 37:137-146 2007
  15. T細胞受容体のクラスター形成と T 細胞活性化のシグナル伝達.横須賀忠 臨床免疫・アレルギー 46:227-232 2006
  16. T細胞活性化の開始と維持を担うシグナルソームTCRマイクロクラスター.横須賀忠 実験医学 24:499-501 2006
  17. 遺伝子医学MOOK⑥シグナル伝達病を知る「TCRを介するシグナル伝達遺伝子」メディカルドウ 横須賀忠 2006
  18. 臨床免疫学(上)「TCRの構造と機能」横須賀忠、斉藤隆日本臨牀 2005
  19. CD8+ T細胞のエフェクター、メモリーへの分化と細胞増殖.横須賀忠 臨床免疫 42:271-277 2004
  20. バイオ高性能機器・新技術利用マニュアル「フローサイトメトリー」横須賀忠、斉藤隆 蛋白質核酸酵素 2004

教科書

標準免疫学第4版

https://www.igaku-shoin.co.jp/book/detail/107244

大阪大学の宮坂昌之先生監修、理研の小安重夫先生、京都大学の椛島健治先生編集の教科書ができあがりました。私は「TCRによる認識」を担当しております。微妙に4月1日に間に合いませんでしたが、来年度からはこの教科書を使用した反転型学習を講義に取り入れようかと考えております。宮坂先生の命で、その分野の第一人者が執筆者に名を連ねておりますし、標題のとおり、医学生にとって最適の教科書に仕上がっています。